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Ostwald ripening is the last stage of the evolution of a system with two coexisting
phases. It is a relatively simple nonequilibrium phenomenon with several inter-
esting features. For example, as the system coarsens it goes through a scaling
state, one which looks the same (up to an overall length scale, which grows) at
all times. The dynamics of the problem can be mapped, in two dimensions, onto
an evolving Coulomb system. In this work we present a brief summary of a
novel theoretical approach to this problem, based on an analytic derivation
(using a mean-field approach) of an effective two-body interaction between
droplets of the minority phase. The resulting interacting many-body dynamics is
solved by a very efficient numerical algorithm, allowing us to follow the evolu-
tion of more than 106 droplets on a simple workstation. The results are in
excellent agreement with recent experiments.

Ostwald ripening(1) is a coarsening process, observed during the late stage
of the evolution of a two-phase system (say, solid in liquid), in the course
of which the droplets of the minority phase exchange material by means of
diffusion. This process leads towards a scaling state in which the charac-
teristic length scale grows with time according to the Lifshitz-Slyozov
law(2) R(t) ~ /1/3. When rescaled by R(t), all statistical characteristics of the
system (such as droplet size distribution, spatial correlations, etc.) are time-
independent.
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This problem can be reduced to an implicit system of ordinary differential
equations.(6–8) Since these calculations take into account all the com-
plicated interactions between the droplets, mediated by the diffusion field,
they do not elucidate the relative importance of different aspects of these
interactions. The number of droplets and the length of the simulations are
also limited. On the other end of the complexity scale are analytical mean
field treatments(2, 9, 10) that neglect all spatial effects; these, however, are too
simple to account for correlations in a system of nonvanishing volume
fraction. Previous attempts to "interpolate" between these extremes, and
provide an analytical treatment of the spatial effects(11, 12) contain uncon-
trolled approximations(13) and lead to very complicated expressions.

Using a mean-field type approximation, we calculated analytically
pairwise interactions between the droplets. These appear in closed-form
dynamic equations for many interacting droplets, which are integrated
numerically. Our model gives rise to a very efficient numerical algorithm;
the evolution of tens of thousands of droplets can be followed. Our work
was motivated by and our results are compared with a recent experiment
on a two-dimensional film of liquid and crystalline succinonitrile in
coexistence.(14) This experiment shows that even at cp = 0.4 the droplets ar
almost circular; therefore we characterize the system by the set of the
droplets' radii Ri and the positions f, of their centers.
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These characteristics were studied in a number of detailed numerical
simulations. The Cahn-Hilliard equation(3, 4) solved in the entire system,
provides the most basic model of Ostwald ripening. If the solid droplets are
assumed to be uniform and only their boundaries are retained to describe
the system, the problem becomes fine of solving the diffusion equation for
the concentration field c(r) between droplets, with Gibbs-Thomson bound-
ary conditions:(5)

The boundaries move in response to the incident flux;

At long times a quasi-static approximation can be used and the diffusion
problem turns into Poisson's equation in 2 – d,



(Ro is an arbitrary length). The boundary conditions (1) on the surface of
each droplet give rise to linear equations which determine the charges qt

and the dipoles pt. When the resulting solution is used in (2) to derive the
flux at droplet i, we find that it's normal component has two terms. One
is isotropic, due to the charges; it affects the droplet's area and therefore
determines the dynamics of the radii. The other is an anisotropic contribu-
tion, due to the dipoles, which gives rise to a shift of the centers of the
droplets.(11, 15) The charges and dipoles can be eliminated, yielding(15)

dynamic equations for the radii and positions of the droplets:
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We write the solution of Eq. (3) in terms of "charges" and "dipoles"
placed at rt

where XliJ=\fJ — fl\ and i?c = a/co0 is a capillary length. For the first
equality in (6) see ref. 11; the second is obtained from the anisotropic part
of the boundary condition at the droplet's surface.(15) The second equality
in Eq. (5) is due to a sum rule;(15, 16) L,~j are the elements of the inverse of
the matrix L, defined as:(6)

The value of the parameter Ro is arbitrary; it does not affect the dynamics
of the system.(15) Once L has been inverted, we can evaluate the radii at the
next time step. One must invert the NxN matrix Lt } at each time step
(which takes O(N3) operations); since we need O(N) time steps, each run
would cost O(N4) computations.

Beenakker(17) solved an analogous problem in 3 – d by truncating the
matrix LUj. Motivated by the effect of screening,(18, 19) he took into account
only interactions between those droplets whose separation does not exceed
a threshold. Akaiwa and Meiron(8) used the analogous truncation proce-
dure in 2 – d. However, formal truncation of the matrix seems problematic.
Since the matrix elements grow with Xit j , the elements of the inverse matrix
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L l as functions of the cutoff should contain large fast oscillating com-
ponents. Apparently, the success of Akaiwa and Meiron(8) is due to the fact
that these oscillations are effectively averaged out during the run.

Rather than discarding large matrix elements and proceeding to
invert the truncated matrix numerically, we calculate analytically the
elements of L~\ using a mean field approximation. First, represent L as
the sum of its diagonal and off diagonal parts, L = Lo — L,, where
{£0\j = SlijRjlosiRl/R0) and (£,),,,.= -(1 -Su) R,Rjlog(Xu/R0) and
introduce a new matrix f defined by
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This is indeed the inverse of L if f satisfies the equation

For convenience we represent Tl<J = RlRj4>ij; Eq. (8) now becomes a con
dition on the matrix 0, which we write separately for the diagonal and
off-diagonal elements:

with

The set of Eqs. (9)–(11) is exact but solving it is as difficult as inverting L.
The advantage of this formalism is that it serves as a convenient starting
point to generate approximate expressions for <f>K,—in particular, a manag
able mean-field approximation.

We give now an outline of the main ideas and formal steps of the
derivation of our approximation to <f>tj; details will be presented else-
where.(15) First of all we assume that the i,j matrix element depends only
on the corresponding distance,(20) <j>ltJ• = <j){Xi<j), and that <j>{X) varie
on scales £ such that the number of droplets within an area C2 is large.
If this holds we can replace in Eqs. (10) and (9) the factor l/log(/?,//?<>)
by its mean value and the sums by integrals. Within this mean-field
approximation Eq. (9) implies ^^"{) = const. = <l>0; this leads to a self-c
sistent expression(15) for (j>{XUj) only if we set yk = const. = y0 which, in



which is solved by the zeroth order modified Bessel function of the second
kind (also called Mac-Donald function), <j>{X) = K0(X/Q- This determin
the off-diagonal elements of <j>K, up to the length £ which depends on t
arbitrary parameter Ro. Since the value of this parameter does not affect
the exact solution of the problem, we can tune it to improve our
approximation. Note that when our (j>{X) is used in the integral form o
Eq. (9) we get

After some lengthy algebra, presented elsewhere(15) we can show that this
condition is satisfied when Ro satisfies the following approximate expression:
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turn, means (see Eq. (11)) that <t>0 = 0 and yo= 1. Thus within our mea
field treatment of $, Eq. (10) becomes

where we introduced a constant length, defined by

Here n = q>/n(R2y is the number of droplets per unit area; the angular
brackets denote averaging over the droplet size distribution. Operating
with V^ on Eq. (12) yields the differential equation

By substituting Eq. (16) in Eq. (13) we eliminate Ro from the problem and
obtain an equation for £:

which is almost identical to Marqusee's expression for the screening
length.(10) The solution for <j>(X) determines the matrix f and we get n



expression for the matrix elements L, j which, when used in Eq. (5)
together with the relation(l5)

Since K0(x) ~ exp( - x) for large x, £ indeed has the meaning of a screening
length. Note that the total area of the droplets is conserved by Eq. (18).

The approximations made, of replacing the sums by integrals and
\/\og(Rj/R0) by its average value \/(2nC2), are valid if the function (j>(X)
is smooth and the number of droplets in the screening zone is large:
Af£ = « C 2 » l . For 9; = 0.13 (as used in the experiment) the approach out-
lined above gave a much too small value for £. A somewhat larger value
was obtained(15) by taking into account the fact that each of the droplets
is surrounded by a depletion zone, from which all neighbors are excluded.
Including depletion zones retains an equation of the same form as Eq. (18)
for the evolution of the radii, but with the mean-field ( replaced by (sc > £.
For q> = 0.13 it becomes (sc = 2.12 R « 0.56^ where X is the typical distan
between neighbors. This value is obtained from solving a set of equations
which, in the low concentration limit, approach Eq. (17). Although £„ is
still too small to provide a formal support to our approach, we tested it by
integrating (numerically) Eqs. (18) and (6).

The detailed description of our numerical algorithm is presented else-
where.(15) An advantage of our method is that it conserves the total area
of the droplets at each time step. Computational efficiency is very high: an
entire run, starting with N droplets initially and running till most disappear
(i.e., reach Rtx0) takes only O(N log N) operations. This is due to the fact
that we are able to keep the time step reasonably large, eliminating a large
number of droplets at each step. At the same time, unlike previous
studies,(8, 17, 21) we ensure exact conservation of the total area of the
droplets at each time step. This makes our approach useful for an extensive
study of the Ostwald problem.

We used initial systems of up to 1.2 • 106 droplets with toroidal bound-
ary conditions. First evaluate Rt using Eq. (18) with ( = 2.75R; next use
Eq. (6) to calculate the motion of the droplets' centers.

Regarding this motion, one can use Eq. (6) to estimate its impor-
tance(11, 15) by comparing the characteristic times for significant shift versus
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finally yields our central result:
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a shrinking droplet's lifetime; Tshift/Tlife~(Ar2//?2) xn/cp. Hence for small
fractions (and even for p = 0.13) the shift of the droplets is adiabaticall
slower than the droplets' growth and one is tempted to neglect the motion
of the centers. Indeed we tried this, but the resulting solution of the
dynamics of the radii alone led to severe inconsistencies (manifest in signifi-
cant overlap of neighboring droplets, i.e., R,+ Rj > XtJ). This convinced us
that the correlations induced by the proper movement of the droplets are
essential for a physically sensible solution.

The sum on the r.h.s. of Eq. (6) appears to have convergence
problems; assuming that the charges q} are uncorrelated random variables,
with zero mean (as required by the total area conservation) one can easily
get

where Ls is the size of the system. The charges, however, are correlated (the
effect of screening) and this causes fast convergence.(15) We performed in
some cases the entire sum and then repeated the simulations, summing
only over droplets j with \XUJ\ <b, using b = 23X and b = 3.25X (the latter
value corresponds to about 10 terms in the sum); no significant difference
between these three simulations was found.

First we tried to evaluate the distribution of the droplets' radii in the
scaling state (see Fig. 1). Our previous studies(15) yielded only limited
agreement with the experimentally obtained distribution and, since this
function has been measured with considerable precision, we decided to
integrate the evolution of a very large system, to check whether the observed
deviations are due to the fact that with smaller systems we did not reach the
asymptotic scaling regime.

For 1,200,000 initial droplets at <p = 0.13 we started taking data when
the number of droplets was 30,000; beyond this point the size distribution
did not change noticeably, indicating that we have reached the scaling
regime. The agreement with the measurements of Krichevsky and Stavans
is very good.

The system approached the scaling state at N x 3000; this is when we
started our measurements. In order to reduce fluctuations we averaged all
the data over 8 runs. Such a run took about 30 hours on a single processor
of an HP-9000 (series K200) workstation. First we present the distribution
of the droplets' radii in the scaling state (see Fig. 1). The agreement with
the experimental points(14) is reasonable. It is interesting to note that our
distribution agrees very well with that of Akaiwa and Meiron (see Fig. 20
of ref. 8).
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Fig. 1. The size distribution of the droplets; R is normalized by R. Data were taken when
the number of droplets (initially 1,200,000) decreased to N = 30,000 (largest circles),
N=\5, 000 (medium circles) and yV = 7000 (small circles). Each plot presents the average over
8 runs; the solid line is a guide to the eye. The fact that at these times the same distribution
was obtained indicates that we reached the scaling state. The experimental result of
Krichevsky and Stavans is also shown (diamonds).

A much more demanding comparison is that of various correlation
functions that were also measured by Krichevsky and Stavans. Figure 2
presents the correlation function G(r)—the probability to find a droplet's
center at a distance r from a given droplet's center, as obtained by our
numerical solution and experiment. To get these data we run systems with

Fig. 2. Weighted time average of the correlation functions of droplets' positions, G(r), taken
at different times in the scaling state, each averaged over 8 runs (circles); the experimental
results of Krichevsky and Stavans (squares). The solid line is a guide to the eye.
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50,000 initial droplets; at <jo = 0.13 the system appeared to approach the
scaling state at N=3000, at which point we started our measurements. In
order to reduce fluctuations we averaged all the data over 8 runs. We
recovered the position of the initial rise of G(r) as well as the existence and
position of its maximum. The value of our curve at the maximum is smaller
than the experimental one; our G(r) is rather close to the result of
Masbaum, obtained by solving the Cahn-Hilliard equation (see Fig. la in
ref. 4), that also exhibits a small peak. Akaiwa and Meiron,(8) on the other
hand, obtain with their dipole approximation a peak which slightly over-
shoots and then decreases below the experimental points.

We measured also the correlation functions of the charges, defined firs
in ref. 14, which contain more detailed information about the system. For
a charge qs calculate Q+(r), the total amount of similar charge within an
annulus [r, r + dr] around f, and define the function

Fig. 3. The correlation functions for the same and opposite charges, as obtained by our
simulations and by experiments. Our data present averages over 8 runs. The solid line is a
guide to the eye.

Similarly we define g_(r) in terms of the opposite charges. These two func
tions, as obtained by our simulations, are presented in Fig. 3 together with
the corresponding experimental data of Krichevsky and Stavans. We find
the agreement between theory and experiment quite impressive.

In summary, we introduced and tested a model for the Ostwald
ripening process in two dimensions. Our model approximates the exchange
of material between the droplets, as determined by the complicated dif-
fusive interaction, by simple pairwise couplings. An approximate mean field
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type approach is used to evaluate these pairwise interactions. The resulting
dynamic equations are then solved numerically. Our model gives good
agreement with experiment for a fairly large value of area fraction. We
found that the shift of the droplets plays an important role at cp = 0.13. Ou
method leads to a very efficient numerical algorithm that can be useful for
future studies of this problem.
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